Asymptotic Stability for one Dimensional Differential-Delay Equations*

نویسنده

  • JAMES A. YORKE
چکیده

G? = (4 E c* : II d II < PI. I f ~(a) is defined and continuous on [t q, t], we will write xt for the function for which x~(s) = x(t + S) for s E [-q, 01. Hence xt E C, . This paper shows that for a nonlinear one-dimensional differential delay equation a(t) = F;(t, x1(.)) (DDE) one can frequently determine (almost by inspection) if the 0 solution is asymptotically stable and give a region of attraction. Theorem 1.1 gives a simple, readily applicable criterion for asymptotic stability. No use is made of complicated criteria such as the existence of a Liapunov function. For 4 E Cq, define Y44 = sup{% $l& (b(s)>*

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations

In this paper we introduce some stability criteria of nonlinear hybrid systems with time delay described by impulsive hybrid fuzzy system of differential equations. Firstly, a comparison principle for fuzzy differential system based on a notion of upper quasi-monotone nondecreasing is presented. Here, for stability analysis of fuzzy dynamical systems, vector Lyapunov-like functions are defined....

متن کامل

Stability analysis of impulsive fuzzy differential equations with finite delayed state

In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...

متن کامل

Asymptotic properties of fractional delay differential equations

In this paper we study the asymptotic properties of d-dimensional linear fractional differential equations with time delay. First results on existence and uniqueness of solutions are presented. Then we propose necessary and sufficient conditions for asymptotic stability of equations of this type using the inverse Laplace transform method.

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Asymptotic Stability of a Class of Impulsive Delay Differential Equations

This paper is concerned with a class of linear impulsive delay differential equations. Asymptotic stability of analytic solutions of this kind of equations is studied by the property of delay differential equations without impulsive perturbations. New numerical methods for this kind of equations are constructed. The convergence and asymptotic stability of the methods for this kind of equations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003